本文目录一览:
正态分布的分布函数是什么?
分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
正态分布函数公式是什么?
正态分布函数公式是P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}。 其中 F(y)为Y的分布函数,F(x)为X的分布函数。其中μ为均数,σ为标准差。μ决定了正态分布的位置,与μ越近,被取到的概率就越大,反之越小。
σ描述的是正态分布的离散程度,σ越大,数据分布越分散曲线越扁平。σ越小,数据分布越集中曲线越陡峭。若随机变量X服从一个位置参数为μ、尺度参数为σσ的概率分布,且其概率密度函数为f(x)=12π−−√σe−(x−μ)22σ2。
正态分布函数的特征
1、集中性,正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性,正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变答动性,正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ)。
5、u变换,为了便于描述和应用,常将正态变量作数据转换。
正态分布函数公式是什么样子的?
标准正态分布函数公式如下图:
标准正态分布函数的性质:
1、密度函数关于平均值对称。
2、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
3、函数曲线的反曲点为离平均数一个标准差距离的位置。
4、平均值与它的众数以及中位数同一数值。5、95.449974%的面积在平均数左右两个标准差的范围内。
标准正态分布是以0为均数,以1为标准差的正态分布,记为N(0,1)。标准正态分布在数学、物理及工程等领域都非常重要,在统计学的许多方面也有着重大的影响力。
正态分布也称为高斯分布。客观世界中很多变量都服从或近似服从正态分布,且正态分布具有很好的数学性质,所以正态分布也是人们研究最多的分布之一。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
正态分布特征函数是什么?
正态分布的分布函数:若随机变量X服从一个位置参数为μ、尺度参数为σσ的概率分布,且其概率密度函数为f(x)=12π√σe(xμ)22σ2。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
正态分布特征函数特性:
1)集中性:曲线的最高峰位于正中央,且位置为均数所在的位置。
2)对称性:正态分布曲线以均数所在的位置为中心左右对称且曲线两段无线趋近于横轴。
3)均匀变动性:正态分布曲线以均数所在的位置为中心均匀向左右两侧下降。
4)曲线与横轴间的面积总等于1。
标准正态分布函数是什么?
标准正态分布函数是“常态分布”,又名高斯分布,正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。正态分布有两个参数,即期望(均数)μ和标准差σ,σ的平方为方差。
标准正态分布函数的性质:
1、密度函数关于平均值对称。
2、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
3、函数曲线的反曲点为离平均数一个标准差距离的位置。
4、平均值与它的众数以及中位数同一数值。5、95.449974%的面积在平均数左右两个标准差的范围内。